

Cascade Amplifier

m]n[PCB

Date Printed: 23 May 2025

Back Side

PART NO	TITLE	PIECES PER PANEL
04B-345	Cascade Amplifier	2

Ordering Information

Email me, <u>nolan@minipcb.com</u>, a list of the boards you'd like to buy, how many you want, when you want them delivered by, and a shipping address. We'll figure out what payment option and price works for you.

Circuit Description

This miniPCB implements a two-stage cascade amplifier using discrete NPN bipolar junction transistors (Q1 and Q2), each configured in a common emitter configuration. The cascade topology multiplies the gain of two amplifier stages, providing significantly higher overall voltage amplification while maintaining phase inversion. This circuit serves as a practical platform for studying multistage biasing, interstage coupling, feedback, and gain control techniques. The board also supports substitution of compatible N-channel MOSFETs for extended exploration.

Power Supply Conditioning

C2 and C3 are power rail filtering capacitors that stabilize the supply voltage and suppress highfrequency noise. These components ensure consistent DC conditions for both stages and improve signal integrity throughout the circuit.

Input Coupling and Stage 1 Biasing (Q1)

The AC input signal is coupled to the base of the first transistor Q1 through C1, a decoupling capacitor that blocks DC from the signal source. TP1 allows direct measurement of the input signal voltage.

The base voltage for Q1 is set by a resistor divider formed by R1, R2 (a multiturn trimmer), and R3. This network defines the quiescent operating point for the first stage. TP2 provides a test point to measure the base voltage of Q1.

Figure 1 - Single Board, Component Outlines

Stage 1 Feedback and Load Network

A local feedback loop composed of R4 and C4 connects the collector and base of Q1, introducing frequencydependent feedback that helps stabilize gain and bandwidth. The collector load for Q1 includes R5, R7 (trimmer), and R8, allowing for adjustment of the DC operating point and output swing. TP3 enables measurement of Q1's collector voltage.

The emitter of Q1 is grounded through R6, with C5 providing AC bypass to maintain high-frequency gain. This combination helps set the emitter current and provides thermal stability. TP6 allows observation of Q1's emitter voltage.

Interstage Coupling and Stage 2 Biasing (Q2)

Signal output from Q1 is passed to the base of Q2 through C6, an interstage decoupling capacitor that blocks DC while preserving the amplified AC signal. The base of Q2 is biased through a second resistor network composed of R9, R10 (trimmer), and R11, allowing control over the second stage's bias point. TP4 is placed at Q2's base for monitoring.

Stage 2 Feedback and Output Network

Q2 features a feedback network from collector to base using R12 and C7, similar to stage 1, to shape frequency response and maintain gain stability. The collector of Q2 is connected to the supply rail through a resistive network made up of R13, R15 (trimmer), and R16, forming the output load. TP5 is used to measure Q2's collector voltage, which represents the final amplified output signal.

The emitter of Q2 is connected to ground through R14, with C8 serving as a bypass capacitor to preserve gain at higher frequencies. TP7 is provided for emitter voltage measurements of the second stage.

Transistor Configuration

Q1 and Q2 are both mounted in TO-92 footprints with a standard C-B-E (Collector–Base–Emitter) pinout. The board is optimized for use with general-purpose NPN BJTs, though many N-channel MOSFETs with similar pin configurations can be used as drop-in replacements. Most JFETs are not compatible due to differing pinouts and biasing requirements. This cascade amplifier offers an accessible way to study two-stage amplification, phase relationships, and the role of feedback and interstage coupling in practical amplifier design.

Simulation in LTspice

LTspice was used to verify that selected component values produced reasonable amplifier behavior before assembling physical boards. The simulation helped confirm that the circuit was biased correctly, the signal was amplified, and the overall configuration functioned as expected with a voltage gain slightly greater than 13. While the analysis wasn't exhaustive, the simulation served as a practical check to ensure the design was sound and worth building.

Parts List

REF DES	PART TYPE	VALUE / DESCRIPTION	
C1	CAPACITOR	2.2uF	
C2	CAPACITOR	0.1uF	
С3	CAPACITOR	10uF	
C4	CAPACITOR	1nF	
C5	CAPACITOR	10uF	
C6	CAPACITOR	2.2uF	
С7	CAPACITOR	1nF	
C8	CAPACITOR	10uF	
R1	RESISTOR	10kΩ	
R2	RESISTOR (TRIMMER)	25kΩ	
R3	RESISTOR	10kΩ	
R4	RESISTOR	330Ω	
R5	RESISTOR	3.3kΩ	
R6	RESISTOR	1kΩ	
R7	RESISTOR	330Ω	
R8	RESISTOR	1kΩ	
R9	RESISTOR	10kΩ	
R10	RESISTOR (TRIMMER)	25kΩ	
R11	RESISTOR	10kΩ	
R12	RESISTOR	330Ω	
R13	RESISTOR	3.3kΩ	
R14	RESISTOR	1kΩ	
R15	RESISTOR (TRIMMER)	2.2kΩ	
R16	RESISTOR	1kΩ	
Q1	TRANSISTOR	2N3904	
TP1-TP11	TEST POINT	KEYSTONE ELECTRONICS SERIES 5000	
P1	HEADER PINS	5POS, 2.54mm PITCH, RA	

Pictures of the Build

Testing Videos

mIntPCB

DATASHEET

Date Printed: 23 May 2025

Parts List (Form)

REF DES	PART TYPE	VALUE / DESCRIPTION
C1	CAPACITOR	
C2	CAPACITOR	
С3	CAPACITOR	
C4	CAPACITOR	
C5	CAPACITOR	
C6	CAPACITOR	
C7	CAPACITOR	
C8	CAPACITOR	
R1	RESISTOR	
R2	RESISTOR	
R3	RESISTOR	
R4	RESISTOR	
R5	RESISTOR	
R6	RESISTOR	
R7	RESISTOR	
R8	RESISTOR	
R9	RESISTOR	
R10	RESISTOR	
R11	RESISTOR	
R12	RESISTOR	
R13	RESISTOR	
R14	RESISTOR	
R15	RESISTOR	
R16	RESISTOR	
Q1	TRANSISTOR	2N3904
TP1-TP11	TEST POINT	KEYSTONE ELECTRONICS SERIES 5000
P1	HEADER PINS	5POS, 2.54mm PITCH, RA

mî	nî	P	C	B
	1	-	_	

Revision History

REV	DESCRIPTION	ECO	DATE
Α	Initial Release		